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Effect of backleak in nephron dynamics
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The effect of transepithelial solute, i.e., sodium chloride, backleak is taken into consideration in the spa-
tiotemporal evolution of the chloride concentration along the thick ascending limb of a single nephron. The
importance of the mechanism and of its mathematical modeling is argued on physiological grounds. The
backleak ‘‘strength’’ is found to significantly modify the threshold for the appearance of temporally oscillatory
behavior in the chloride concentration in the thick ascending limb which has previously been experimentally
observed in normotensive rats.
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In the past few years, there has been an increasing num
of studies of nephron dynamics. The nephron is the fu
tional unit of the kidney; the human kidney consists of'106

such units@1#. Naturally, in light of this large number, on
can take different paths in studying the dynamics of phy
ological processes in the kidney.

One approach focuses on a single nephron and the f
tions that it performs@2–4#. In this setting@2–4#, one exam-
ines the flow of blood through the filtering processes of
nephron. Blood enters through the afferent arteriole into
glomerulus, where its constituents are filtered and large
lecular weight contents, such as blood cells and proteins
retained. On the contrary, low molecular weight substan
proceed through the proximal tubule to the loop of Hen
The membranes which separate the tubules from the inte
tium are permeable to certain substances causing furthe
tering. The interstitium is the region around the nephron c
sisting of fine, reticular fibrils. The low molecular weigh
substances move between the limbs of the loop of Henle
the interstitium through active and passive~backleak or dif-
fusion! processes. These substances then proceed from
thick ascending limb of the loop to the distal tubule whe
the macula densa cells exert a negative delayed feedba
the incoming blood flow. This is the so-called tubuloglom
erular feedback or TGF. The macula densa ‘‘measure’’
concentration levels of the NaCl flowing through the upp
part of the distal tubule~before the collecting duct where th
resulting filtrates are collected! and accordingly decide to
constrict the afferent arteriole, if the NaCl concentration
high, or not. The TGF mechanism is very important for t
stabilization of the renal blood flow in response to arter
blood pressure fluctuations. A schematic diagram of
above process is presented in Fig. 1 which is very simila
Fig. 3 in Ref.@5#.

It has been observed experimentally that the TGF sys
can exhibit temporal limit cycle oscillations in certain va
ables, including the fluid flow, the pressure, and the tubu
fluid NaCl concentration in the early distal tubule, see, e
Refs.@6–8#. These are nonsinusoidal, nonlinear temporal
cillations @9,10#, with periods of the order of tens of secon
@5# which occur due to the delicate interplay between tra
port and feedback mechanisms@2,11#. In Ref. @2–4#, these
limit cycle oscillations were observed numerically. Howev
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the analysis was introduced but did not examine in detail
effects of backleak~simple diffusion!.

In this work, we focus on the study of solute transpo
through the thick ascending limb of a single nephron co
tinuing along the line of study originally proposed by Re
@2–4#. The main contribution of this paper is the detaile
study of an important factor, namely, the transepithelial s
ute, i.e., chloride, backleak from the interstitium back to t
thick ascending limb of the loop of Henle. This contributio
was introduced, but was subsequently neglected in the an
sis of Ref.@2#. The aims of the present work are~1! to physi-
ologically motivate the inclusion of the backleak;~2! to
present the analysis for incorporating such a term along
vein introduced in Ref.@2#; ~3! to examine the phenomeno
ogy of the single-nephron dynamics in the presence of
backleak and to compare it with the case in which the ba
leak is absent.

The manifestation of the analytical tractability and t
analytical and numerical evidence for the importance of
cluding such a mechanism are the distinguishing feature
the present work with respect to previous ones. In particu
this study constitutes a fuller analysis of the model co
structed in Ref.@2#.

Our presentation proceeds as follows: we first present
mathematical model and explain the relevance of the inc

FIG. 1. A schematic representation of the nephron adapted f
Ref. @5#.
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sion of the backleak diffusion mechanism. We demonstr
the ways in which the backleak term can be incorporated
the theory and examine the relevant results analytically
well as numerically. We then summarize our findings a
conclude.

In the spirit of Refs.@2,4#, we will consider the following
transport model for the chloride concentration along
thick ascending limb of the loop of Henle:

Ct~x,t !52F„C~1,t2t!…Cx~x,t !2
VC~x,t !

K1C~x,t !

2P„C~x,t !2Cext~x!…, ~1!

where

F~x!511K1tanh@K2~Cop2x!#.

Equation~1! assumes that the nephron is treated as diffus
in a rigid tube of unit length (x51), and all quantities are
dimensionless according to the rescaling of Ref.@2#. The
model is based on the mass conservation of chloride, cla
fying its transport as occurring due to three key processe

~1! The TGF induced axial chloride advection at intrat
bular flow speedF. This mechanism incurs the time delayt.
K1 andK2 are constants andCop is the concentration of the
steady solutionS(x) at the end of the thick ascending limb o
the loop of Henle. The steady stateS(x) occurs forF51.

~2! The efflux of the solute into the interstitium due
active processes, i.e., metabolic pumps in the tubular w
This is assumed to be occurring by means of the Michae
Menten kinetics with maximum transport rateV and Michae-
lis constantK.

~3! Finally, and most importantly for this presentation, t
transepithelial chloride backleak which depends on the fi
interstitial chloride concentration profileCext and its gradient
with respect to the tubular profile. This last term is prop
tional to the chloride permeabilityP.

We briefly analyze initially the case without the backlea
i.e., P50. Then, the steady state problem can be solved
the implicit form

2Vx5K lnS C

C0
D1C2C0 , ~2!

where C0 is the concentration at the starting point of t
thick ascending limb, i.e.,x50.

Analytically, tractable simplifications of Eq.~2! can be
given in two different settings.

~1! For very small NaCl transport rates~e.g., for maxi-
mum transport rateV!1), in which case the concentratio
can be approximated to second order as

C5C01C0~a12Aa1
21b1x!, ~3!

wherea15(C01K)/K andb152V/K. Notice that the lead-
ing order approximation for the spatial decrease in conc
tration is linear.
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~2! For K@C0.C, i.e., for very weak, practically linea
in C, active transport, in which case to second order
steady state, spatial concentration decay can be app
mated by

C5
a2

b21G exp~a2x!
, ~4!

where G5(a22b2C0)/C0 , a25V/K and b25V/K2. To
leading order, here the decay is exponential.

FIG. 2. The locus of points of the Hopf bifurcation in theg-t
plane is shown in the top panel. Below the curves, the steady s
solution is stable, while above the curves the Hopf bifurcation s
in. The dotted line corresponds toR50, the dash-dotted toR
50.1, the dashed toR50.3, and the solid toR50.5. The plus and
circle, correspond, respectively, to the cases whose numerical
evolution ~at the end point of the thick ascending limbx51) is
shown in the bottom panel of the figure. The plus corresponds to
(g,t)5(4,0.23) which is stable forR50.5, while the circle to
(g,t)5(4,0.26) which is unstable, as confirmed by the dynami
evolution.
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The main theme of earlier studies was to examine
stability of the above steady state@2–4#. In particular, experi-
mental evidence for rats indicated that both steady state
limit cycle temporal behavior of the solute concentration
the end point of the thick ascending limb were possib
These types of behavior occur under physiological con
tions for different values of the feedback delay, and of
TGF advection rate. The backleak mechanism was inclu
in the model but was subsequently neglected, predomina
due to its mathematical intractability. However, in this pap
we reexamine this topic and make a case for the inclusio
the latter factor due to the following:

~1! In many cases, the administering of diuretics, and
particular osmotic diuretics such as mannitol, allows
creased passive backleak of solutes through the parace
pathway@12#. This indicates that the incorporation of the la
term of Eq.~1! is particularly relevant in modeling such pro
cesses.

~2! In the case of acute renal failures, the backleak of
glomerular filtrate through abnormally permeable tubu
epithelia occurs@13#. Hence to model such abnormalities,
is important to include backleak terms.

Even though in this study we do not address specific ca
of renal failures and pharmacological treatments thereof,
examinequantitativelythe effects of the backleak.

We first consider the general case of solute backleak
clusion, in fact, for a more general setting than Eq.~1!, i.e.,
for general solute transport kineticsJ(C), namely, for a
steady equation of the form

Cx52J~C!2P~C2Cext!. ~5!

Following Ref.@2#, we call the solution of Eq.~5! S(x) and
examine the stability of the linearization around such a so
tion using the expansionC(x,t)5S(x)1eD(x,t), wheree
is the formal linearization parameter and substitution of
linearization ansatz into the dynamical transport equa
yields toO(e),

Dt52Dx2J8~C!D1rS8~x!D~1,t2t!2PD, ~6!

wherer 52F8„S(x)…. The prime will be used to denote de
rivative with respect to the functional argument. As is typic
in linearization expansions, we separate the temporal f
the spatial dependence ofD(x,t) according to D(x,t)
5 f (x)exp(lt). Then the eigenvaluesl of the linearization
contain the information about the stability of the steady sta
If Re(l),0, then the steady state is dynamically stab
while the zero crossing~going from negative to positive! of
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the real part of the eigenvalue will signal the transition
instability and to oscillatory behavior due to this so-call
Hopf bifurcation. Using the above separation of variabl
Eq. ~6! is transformed into an ordinary differential equatio
~ODE! for f which is linear and can be solved as

f ~x!5r f ~1!exp@2lt2h~x!#E
0

x

S8~y!exp@h~y!#dy,

~7!

with h(x)5lx2 ln@S8(x)/S8(0)#1P*0
x@Cext8 /S8(u)#du. How-

ever, in this particular problem, due to the presence of
delay, a compatibility condition needs to be enforced ax
51, providing an explicit equation for the eigenvalue in t
form

exp@l~11t!#52gE
0

1

dy expS ly1PE
1

y Cext8

S8~u!
duD ,

~8!

whereg52rS8(1). We will examine two particular case
of Eq. ~8!.

~1! The simplest and most physiologically realistic one
the case whereCext5qS(x)1q1, whereq, q1 are constants.
This case which, in our view, appears to be the simplest
in terms of mathematical tractability, also appears to be v
interesting from a physiological point of view. In particula
the schematic of p. 106 of Ref.@1# showing the interstitial
solute concentration for corresponding profiles of the th
ascending limb concentration clearly indicates that the ab
prescription of Cext is physiologically relevant at stead
state. In this case, the equation for the eigenvalue becom

15g exp~2lt!
exp~2l2Pq!21

l1Pq
. ~9!

This is a straightforward generalization of the eigenva
condition of Refs.@2–4#, which reduces to the latter one fo
P50. Notice that in this case the profileS is given by
the quadrature x5*C0

S dC(K1C)/@AC21(B2V1AK)C

1BK#, with A5P(12q) andB5Pq1K. In the case of Eq.
~9!, as mentioned above, the instability occurs when the~in
general complex! eigenvaluel5z1 iv crosses the imagi-
nary axis, i.e., whenz50. Hence the instability criterion can
be written as

@e2Pqcos~v!21#@v cos~vt!1Pq sin~vt!#1e2Pqsin~v!

3@Pq cos~vt!2v sin~vt!#50, ~10!
g5
~Pq!21v2

@e2Pqcos~v!21#@2v sin~vt!1Pq cos~vt!#2e2Pqsin~v!@Pq sin~vt!1v cos~vt!#
. ~11!
1-3
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~2! Alternative cases that can be examined are the one
Eqs. ~3! and ~4!. However, the former is quite complicate
due to the polynomial nature of the dependence. In the la
case, upon the simplifying assumption ofC5C0exp(2a2x),
we can find the corresponding profile ofCext'C0exp(2ax)
2(VC0

2/PK2)exp(22a2x). Notice that here we use Eq.~1! as
an inverse problem: we postulateC, and find the correspond
ing Cext ; we do that approximately here for simplicity. The
the corresponding eigenvalue condition can be obtained

15g exp~2lt!
exp@2l2P~12Q!#21

l1P~12Q!
, ~12!

whereQ52VC0 /(PK2) and V/K!1 has been used. Onc
again, one can find the instability threshold conditions
Eqs.~10!–~11!, which we omit for the sake of brevity.

We now turn to numerical results. In particular, we exa
ine the locus of points of the Hopf bifurcation in theg-t
plane, for various values of the permeabilityP, to determine
how the backleak affects the onset of the oscillatory beh
ior. We study this effect in the most physiologically realis
case among the ones mentioned above, namely, the
where the external solute concentration is proportional to
steady state one@1#. Equations~10! and~11! determine for a
given TGF delay time, and the backleak strengthR5Pq, the
oscillation frequencyv, as well asg which is related to the
advection rate, exactly at the critical case, i.e., at the onse
ol.

k,

in

ol.
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the oscillatory behavior. These curves are shown in the
panel of Fig. 2 in theg-t plane, similarly as in Refs.@2–4#,
but for different values ofR. When R50, we retrieve the
original case of Refs.@2–4#. However, and this is one of th
main findings of this work, these curves can besignificantly
shiftedby the consideration of a very relevant physiologic
mechanism such as the inclusion of the backleak.

To further illustrate that point we note that below th
shown curves, the steady state solution will be stable fo
given R, while above them the Hopf bifurcation will lead t
a time-periodic behavior. We thus choose two cases bot
which would be unstable forR50 ~i.e., without backleak!,
but one of which is unstable~circle! while the other is stable
~star! for R50.5. The corresponding results of dynamic
time evolution of the two cases forR50.5 are shown in the
bottom panel of Fig. 2, clearly confirming the theoretic
prediction and highlighting howthe inclusion of the backleak
may have a stabilizing effect in the spatiotemporal evolut
of solute concentration in a single nephron.

In this paper, we have examined systematically the effe
of the inclusion of the solute backleak in the dynamical ev
lution and stability of NaCl concentration profiles over
single nephron of the kidney. We have found that this fac
which is important, as we have argued, in a number of s
tings, may significantly modify the predicted threshold f
the oscillatory behavior observed in experiments@14,15#.
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