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Effect of backleak in nephron dynamics
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The effect of transepithelial solute, i.e., sodium chloride, backleak is taken into consideration in the spa-
tiotemporal evolution of the chloride concentration along the thick ascending limb of a single nephron. The
importance of the mechanism and of its mathematical modeling is argued on physiological grounds. The
backleak “strength” is found to significantly modify the threshold for the appearance of temporally oscillatory
behavior in the chloride concentration in the thick ascending limb which has previously been experimentally
observed in normotensive rats.
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In the past few years, there has been an increasing numbgre analysis was introduced but did not examine in detail the
of studies of nephron dynamics. The nephron is the funceffects of backleaksimple diffusion.
tional unit of the kidney; the human kidney consists<of0° In this work, we focus on the study of solute transport
such units[1]. Naturally, in light of this large number, one through the thick ascending limb of a single nephron con-
can take different paths in studying the dynamics of physidinuing along the line of study originally proposed by Refs.
ological processes in the kidney. [2—4]. The main contribution of this paper is the detailed

One approach focuses on a Sing|e nephron and the funétudy of an important faCtor, namely, the transepithelial sol-
tions that it perform$2—4]. In this setting2—4], one exam-  Ute, i.e., chloride, backleak from the interstitium back to the
ines the flow of blood through the filtering processes of thethick ascending limb of the loop of Henle. This contribution
nephron. Blood enters through the afferent arteriole into thavas introduced, but was subsequently neglected in the analy-
glomerulus, where its constituents are filtered and large mosis of Ref.[2]. The aims of the present work a® to physi-
lecular weight contents, such as blood cells and proteins, a@ogically motivate the inclusion of the backleak?) to
retained. On the contrary, low molecular weight substanceBresent the analysis for incorporating such a term along the
proceed through the proximal tubule to the loop of Henle.vein introduced in Refl2]; (3) to examine the phenomenol-
The membranes which separate the tubules from the interstpdy of the single-nephron dynamics in the presence of the
tium are permeable to certain substances causing further fipackleak and to compare it with the case in which the back-
tering. The interstitium is the region around the nephron conleak is absent.
sisting of fine, reticular fibrils. The low molecular weight ~ The manifestation of the analytical tractability and the
substances move between the limbs of the loop of Henle an@nalytical and numerical evidence for the importance of in-
the interstitium through active and passilmckleak or dif- ~ cluding such a mechanism are the distinguishing features of
fusion) processes. These substances then proceed from tHee present work with respect to previous ones. In particular,
thick ascending limb of the loop to the distal tubule wherethis study constitutes a fuller analysis of the model con-
the macula densa cells exert a negative delayed feedback $ucted in Ref[2].
the incoming blood flow. This is the so-called tubuloglom-  Our presentation proceeds as follows: we first present the
erular feedback or TGE. The macula densa “measure” thénathematical model and explain the relevance of the inclu-
concentration levels of the NaCl flowing through the upper

part of the distal tubulébefore the collecting duct where the Glomerular and

resulting filtrates are collectg¢dand accordingly decide to [Pemutasion Pre-ascending Limb

constrict the afferent arteriole, if the NaCl concentration is Response Cp® Delay at can
high, or not. The TGF mechanism is very important for the = ®=—

stabilization of the renal blood flow in response to arterial - Mscula Densa

blood pressure fluctuations. A schematic diagram of the Parzmeters K |, K,

above process is presented in Fig. 1 which is very similar to

Fig. 3 in Ref.[5].

It has been observed experimentally that the TGF systen BackLeak
can exhibit temporal limit cycle oscillations in certain vari- (Diffusion)
ables, including the fluid flow, the pressure, and the tubular Tnterstitium: € (x)
fluid NaCl concentration in the early distal tubule, see, e.g., : -
Refs.[6—8]. These are nonsinusoidal, nonlinear temporal os- ’ cpp  eendinelind \
cillations[9,10], with periods of the order of tens of seconds Parameters K. V /

[5] which occur due to the delicate interplay between trans-
port and feedback mechanisi11]. In Ref.[2-4], these FIG. 1. A schematic representation of the nephron adapted from
limit cycle oscillations were observed numerically. However,Ref. [5].
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sion of the backleak diffusion mechanism. We demonstrate °=
the ways in which the backleak term can be incorporated inta '
the theory and examine the relevant results analytically as 4s
well as numerically. We then summarize our findings and
conclude. o

In the spirit of Refs[2,4], we will consider the following
transport model for the chloride concentration along the
thick ascending limb of the loop of Henle:

351

>

3F

C =—F(C(1 C Vet
(X, 1)=—=F(C(1t—71))Cy(x,1) K¥CxD .l
—P(C(%,) = Cexi(X)), ®
where
! '50.1 0.I15 0?2 0.I25 0?3 0.:3:5 04
F(x)=1+K;tanfK,(Cqop—x)]. t

Equation(1) assumes that the nephron is treated as diffusion 01054 |
in a rigid tube of unit lengthX=1), and all quantities are _ |

dimensionless according to the rescaling of R&f. The -
model is based on the mass conservation of chloride, classiz ™|l |
fying its transport as occurring due to three key processes.

(1) The TGF induced axial chloride advection at intratu- 0051 . , . . . ]
bular flow speed-. This mechanism incurs the time delay ° 0 % T “ % *
K, andK, are constants an@,,, is the concentration of the
steady solutiors(x) at the end of the thick ascending limb of o7l
the loop of Henle. The steady sté®éx) occurs forF=1. 0ossf

(2) The efflux of the solute into the interstitium due to = oo
active processes, i.e., metabolic pumps in the tubular walls % ocossf;
This is assumed to be occurring by means of the Michaelis-~ oo
Menten kinetics with maximum transport rateand Michae- o0s5 1
lis constantk. 004y 10 2 % 20 50 60

(3) Finally, and most importantly for this presentation, the t
transepithelial chloride backleak which depends on the fixed FiG. 2. The locus of points of the Hopf bifurcation in ther
interstitial chloride concentration profit@.,; and its gradient  plane is shown in the top panel. Below the curves, the steady state
with respect to the tubular profile. This last term is propor-solution is stable, while above the curves the Hopf bifurcation sets
tional to the chloride permeabilitly. in. The dotted line corresponds ®=0, the dash-dotted t&®R

We briefly analyze initially the case without the backleak,=0.1, the dashed t8= 0.3, and the solid t&R=0.5. The plus and
i.e., P=0. Then, the steady state problem can be solved, igircle, correspond, respectively, to the cases whose numerical time
the implicit form evolution (at the end point of the thick ascending limxiz=1) is
shown in the bottom panel of the figure. The plus corresponds to the
c (v,7)=(4,0.23) which is stable foR=0.5, while the circle to
—|+C—C,, 2) (v,7)=(4,0.26) which is unstable, as confirmed by the dynamical
Co evolution.

0.061 b

—Vx=KIn

where C, is the concentration at the starting point of the ] ) ]
thick ascending limb, i.ex=0. (2) For K>Cy>C, i.e., for very weak, practically linear

Analytically, tractable simplifications of E¢2) can be in C, active transport, in which case to second order the'
given in two different settings. steady state, spatial concentration decay can be approxi-

(1) For very small NaCl transport ratde.g., for maxi- mated by
mum transport rat&<1), in which case the concentration
can be approximated to second order as
a

C=—7r—7——,
C=Cy+Co(a;— Va+b,x), (3) b,+ G exp(a,x)
wherea; = (Cy+K)/K andb;=2V/K. Notice that the lead-

ing order approximation for the spatial decrease in concenwhere G=(a,—b,C.)/Cy, a,=V/K and b,=V/K?. To
tration is linear. leading order, here the decay is exponential.
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The main theme of earlier studies was to examine thehe real part of the eigenvalue will signal the transition to
stability of the above steady std-4]. In particular, experi- instability and to oscillatory behavior due to this so-called
mental evidence for rats indicated that both steady state andopf bifurcation. Using the above separation of variables,
limit cycle temporal behavior of the solute concentration atEq. (6) is transformed into an ordinary differential equation
the end point of the thick ascending limb were possible (ODE) for f which is linear and can be solved as
These types of behavior occur under physiological condi-
tions for different values of the feedback delay, and of the «

TGF advection rate. The backleak mechanism was included f(x)=rf(1)exgf —\7— h(x)]f S'(y)exd h(y)]dy,
in the model but was subsequently neglected, predominantly 0
due to its mathematical intractability. However, in this paper, %

we reexamine this topic and make a case for the inclusion of . Ny ) / Xr~ o :
the latter factor due to the following: with - h(x) =Ax=In[S (/S (0)] +P/dl CexfS (U)]du. ~ How

(1) In many cases, the administering of diuretics, and inever, in this particular problem, due to the presence of the

particular osmotic diuretics such as mannitol, allows in_delay, a compatibility condition needs to be enforcedat

creased passive backleak of solutes through the paracellul? 1, providing an explicit equation for the eigenvalue in the

pathway{12]. This indicates that the incorporation of the last orm
term of Eq.(1) is particularly relevant in modeling such pro-

cesses. 1 p( y Cly )
(2) In the case of acute renal failures, the backleak of the exgA(1+7)]=— 'yf dyexp \y+ Pf ,—du ,
glomerular filtrate through abnormally permeable tubular 0 1 S'(u)

epithelia occurg13]. Hence to model such abnormalities, it ®)

is important to include backleak terms. . where y=—rS’(1). We will examine two particular cases
Even though in this study we do not address specific cases Eq. (8.

of renal failures and pharmacological treatments thereof, we (1) The simplest and most physiologically realistic one is
examinequantitativelythe effects of the backleak. the case wher€,,.=qS(x) +q;, whereq, g, are constants.
We first consider the general case of solute backleak inThis case which, in our view, appears to be the simplest one
clusion, in fact, for a more general setting than BN, i.e.,  y terms of mathematical tractability, also appears to be very
for general solute transport kinetic§C), namely, for @ jnteresting from a physiological point of view. In particular,
steady equation of the form the schematic of p. 106 of Refl] showing the interstitial
solute concentration for corresponding profiles of the thick
Cy=—J(C)—P(C—Ceqyy. (5)  ascending limb concentration clearly indicates that the above
prescription of Cg,; is physiologically relevant at steady
state. In this case, the equation for the eigenvalue becomes
Following Ref.[2], we call the solution of Eq(5) S(x) and

examine the stability of the linearization around such a solu- exp—\—Pq)— 1

tion using the expansio@(x,t) =S(x) + eD(x,t), wheree 1=7yexp —\7) 9

is the formal linearization parameter and substitution of the A+Pq

linearization ansatz into the dynamical transport equation

yields toO(e), This is a straightforward generalization of the eigenvalue

condition of Refs[2—4], which reduces to the latter one for
P=0. Notice that in this case the profil® is given by
the quadrature XZIEOdC(K +C)/[AC?*+(B—V+AK)C
+BK], with A=P(1—q) andB=Pq;K. In the case of Eq.
wherer = —F’(S(x)). The prime will be used to denote de- (9), as mentioned above, the instability occurs when(the
rivative with respect to the functional argument. As is typicalgeneral complexeigenvaluex ={+iw crosses the imagi-
in linearization expansions, we separate the temporal fromary axis, i.e., whed=0. Hence the instability criterion can
the spatial dependence dd(x,t) according to D(x,t) be written as

=f(x)exp(\t). Then the eigenvalues of the linearization

contain the information about the stab_ility of the_steady state.[equcoiw) —1][w cog wr) + Pgsin(wr)]+ e~ PIsin(w)

If Re(A\)<0, then the steady state is dynamically stable,

while the zero crossinégoing from negative to positiveof X[Pgcogwr)—wsin(w7)]=0, (20

D,=—D,—J'(C)D+rS'(x)D(1t—7)—PD,  (6)

_ (PQ)*+ w?
’ [e PYdoqw)—1][~wsin(wr)+Pqcogwr)]—e PIsin(w)[Pqsinwr)+wcofwr)]

(11)
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(2) Alternative cases that can be examined are the ones dtfie oscillatory behavior. These curves are shown in the top
Egs. (3) and (4). However, the former is quite complicated panel of Fig. 2 in they-7 plane, similarly as in Ref§2-4],
due to the polynomial nature of the dependence. In the latteffut for different values oR. When R=0, we retrieve the
case, upon the simplifying assumption ©f= Coexp(—axX),  original case of Ref{2—4]. However, and this is one of the
we can find the corresponding profile Gf,~Coexp(-aX)  main findings of this work, these curves candignificantly
—(VCY/PK?)exp(—2a,X). Notice that here we use El) as  shiftedby the consideration of a very relevant physiological
an inverse problem: we postula@s and find the correspond- mechanism such as the inclusion of the backleak.
ing Cex; We do that approximately here for simplicity. Then 1o further illustrate that point we note that below the
the corresponding eigenvalue condition can be obtained asshown curves, the steady state solution will be stable for a
N D given R, while above them the Hopf bifurcation will lead to
i~ A—P(1~Q)] 1, (12 a time-periodic behavior. We thus choose two cases both of
AP(1-Q) which would be unstable foR=0 (i.e., without backleak

whereQ=2VC,/(PK?) andV/K<1 has been used. Once but one of which is unstablgircle) vyhile the other is stab[e
again, one can find the instability threshold conditions of(St) for R=0.5. The corresponding results of dynamical
Egs. (10)—(11), which we omit for the sake of brevity. time evolution of the two cases fét=0.5 are shown in the
We now turn to numerical results. In particular, we exam-Pottom panel of Fig. 2, clearly confirming the theoretical
ine the locus of points of the Hopf bifurcation in ther  prediction and highlighting howhe inclusion of the backleak
plane, for various values of the permeabilRyto determine may have a stabilizing effect in the spatiotemporal evolution
how the backleak affects the onset of the oscillatory behavef solute concentration in a single nephron.
ior. We study this effect in the most physiologically realistic  In this paper, we have examined systematically the effects
case among the ones mentioned above, namely, the caeéthe inclusion of the solute backleak in the dynamical evo-
where the external solute concentration is proportional to théution and stability of NaCl concentration profiles over a
steady state onel]. Equationg10) and(11) determine for a  single nephron of the kidney. We have found that this factor,
given TGF delay time, and the backleak strerigthPq, the  which is important, as we have argued, in a number of set-
oscillation frequencyw, as well asy which is related to the tings, may significantly modify the predicted threshold for
advection rate, exactly at the critical case, i.e., at the onset dhe oscillatory behavior observed in experimefit4,15.

l=yexp—A\7)
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